extreme edge-friendly indices of complete bipartite graphs
نویسندگان
چکیده
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-friendly index of g under an edge-friendly labeling f. extreme values of edge-friendly index of complete bipartite graphs will be determined.
منابع مشابه
full edge-friendly index sets of complete bipartite graphs
let $g=(v,e)$ be a simple graph. an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where $z_2={0,1}$ is the additive group of order 2. for $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. a labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $i_f(g)=v_f(...
متن کاملFull Edge-friendly Index Sets of Complete Bipartite Graphs
Let G = (V,E) be a simple graph. An edge labeling f : E → {0, 1} induces a vertex labeling f : V → Z2 defined by f(v) ≡ ∑ uv∈E f(uv) (mod 2) for each v ∈ V , where Z2 = {0, 1} is the additive group of order 2. For i ∈ {0, 1}, let ef (i) = |f−1(i)| and vf (i) = |(f+)−1(i)|. A labeling f is called edge-friendly if |ef (1) − ef (0)| ≤ 1. If (G) = vf (1) − vf (0) is called the edge-friendly index o...
متن کاملThe IC-Indices of Complete Bipartite Graphs
Let G be a connected graph, and let f be a function mapping V (G) into N. We define f(H) = ∑ v∈V (H) f(v) for each subgraph H of G. The function f is called an IC-coloring of G if for each integer k in the set {1, 2, · · · , f(G)} there exists an (induced) connected subgraph H of G such that f(H) = k, and the IC-index of G, M(G), is the maximum value of f(G) where f is an IC-coloring of G. In t...
متن کاملEdge-disjoint spanners of complete bipartite graphs
A spanning subgraph S=(V; E′) of a connected simple graph G=(V; E) is an (x+c)-spanner if for any pair of vertices u and v; dS(u; v)6dG(u; v)+c where dG and dS are the usual distance functions in graphs G and S, respectively. The parameter c is called the delay of the spanner. We investigate the number of edge-disjoint spanners of a given delay that can exist in complete bipartite graphs. We de...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transactions on combinatoricsناشر: university of isfahan
ISSN 2251-8657
دوره
شماره Articles in Press 2016
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023